JerkBot documentation

User and Developer Guide.

Yves Zoundi

JerkBot documentation: User and Developer Guide.

Yves Zoundi

Publication date 21/08/2009
Copyright © 2009 Yves Zoundi

Copyright (C) 2009 Yves Zoundi.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documentation License".

As long as you don't use the SVN plugin, do as you please, free or commercial applications. The bot has mostly Apache Licensed dependencies.

If you do happen do use JerkBot, please advertise it or let me know :-). It feels good when one is not the only user of his library :-).

Table of Contents

Lo USET GUIAR oveiiiiiiii e et et 1
INrOAUCTION ...uuiiiiiiiii e ettt iii
Lo SUIMIMATY ettt et et et et e e e e e e eanes iii

2. JerkBot, from the USer Perspectiveccvveureiuiiiniiiniiiiiiie e ii

3. JerkBot, from a technical perspectivecoeeuuiiiiiiniiiniiiiiiiieieeeen, ii

4. Managing multiple bots on multiple SEIrVersccoeeuviiniiineiniiiiiiiieennnen. iii

L Featuresooeiiii i 4
1. Funny Commands Plugincooiiiiiiiiiiii e 4

2. Factoid PIUGinooouiiiiiii e 4

3. Karma PIUZIN ..oouiieiiii e 4

4 IMX PIUZIN ooiniiiii e 4

4.1. Listing available managed Objectsc.oceuieiiiiiiiiiiiiiiiiiiiineieeeen, 5

4.2. See the attributes(properties) of a managed objectccoeeveeniiiniinn..n. 6

4.3. Read an attribute valuecooveiiiiiiiiiiiiiiiiiiin e 6

4.4. Change an attribute valueocoiiiiiiiiiiiiniiiii e 6

4.5. See the methods of a managed ObjJeCtocevviiiiiiiiiiiiiiiiiiens 6

4.6. Call a method of a managed ObjJeCtc..ocuiiiiiiiiiiiiiiiiieeee, 6

5. Authentication PIuginoooiiiiiiiiiiiii e 6

5.1, SigNin, SIZNOUL ..uuitniiiiie e 6

5.2. ReGISLIAtiON PIOCESS ...cvnevunerneii it ettt e ettt et e et e it e e et e eieeinae 7

5.3. Managing users and TOlESc..viuuiiuiiiiiieiiieiieie e 7

6. IRC adminiStration PIUZINcouiiiuiiiiiiiii e 7

T RSS PIUZIN «ooniii e 8

8. SVIN PIUZIN . oeniiiiiii e e 8

9. Statistics PIUZINiuuiiiiiiii e 8

10. Javadoc PIUZINiuniiiiiii e 8

11. Weather PIUZINoouiiniiiiii e 8

I CONTIUIALION ...ittiieii et ettt e e e e e 9
1. Setting up the databaseccoviiuiiiiiiiiiii e 9

2. TREC SELHNEZS +.eeneetneiteii et et e ettt et et et et et et e et e e eeanan 9

3. EMAIl SEHHNES ovueinniiiiit it 9

IIL. USING the DOt ...eeniiii e e 10
L. Start the DOt «....iiiii e 10

1.1. Binary diStribUtiOnceuieiniiiiiiiiiiieii e 10

1.2. Source diStribUtioncooiiiiiiiiiiiiiiiiiii e 10

2. Getting REIP ..eeniieie e 10

3. Information about a commandc.cooviiiiiiiiiiiiiii 10

4. Addressing a mMeSSAZE 10 @ USETueeuuieniunetneiietteii ettt eie et eeneeaneeaneenneens 11

IL. DEVEIOPET GUIAEueiniiniieii ettt e ettt et et e e e e e e e an e 12
INrOAUCTIONuiiiiiiiii i et e e Xiv
1. Target AUIENCEeunitneiteii ettt e e e e e eans Xiv

2. GENETAL NOE ..cevuniiiiiiiiiiiiii et Xiv

IV. Technical InfOrmationcouiiiiiiiiiiiiiiiii e 15
Lo OVEIVIBW ettt 15

2. The build system : Apache Mavenc.ooeeiiiiiiiiiiiniiiniii e 15

3. Main components and code StrUCLUIEcuuieuniiineiiieiiiiiiniiieieeieeiennnens 16

B LOZEINE eneineiie et 16

3.2, EXCEPLIONS ..ttt ettt ettt ettt 16

B3U0SGI o 16

3.4.J0b Schedulingc.oeouiiiiiiiii e 16

3.5, TRICAAING .oeueeniine ittt 17

3.6. The MeSsSaZe PAISET SEIVICE ...ueeuuerrnerniiiiiieiineeieeieei e eneeieeieeinens 17

3.7. The command SEIVICEceeuuiiiiuiiiiiiiiiiiiiieeiie e e 17

3.8. The command resolVer SEIVICEcouuviriiiiiiiiiiiineiiineiiieeiieeiians 17

3.9. The SESSION SEIVICE ..ceuuuiiruneiiiniiiieiiieeiie ettt ettt e ea e 17

iii

JerkBot documentation

3.10. The login Module SETVICEceuviuiiriiiiiniiiiiiii e
I8 B B o B 1 1S5 1 Lo PPN

V. PIugin eXamplec.ooniiniiiiiiiii e

References

1. Set UP @ MAVEN PIOJECT ..vuuniniinein ettt et et e e e et et e e et e et e e eaneaneans
2. Setup the MAVEN PIOJECEvuinintin ittt e e et et e e e eneanees
3. Creating your first cOmMmandcoveuiiniiiiiiiiiiie e
4. Create the OSGI bundlec.oviiiiiiiiiiiiniii e
5. Setup the bot to recognize your plUZinoeeuveviiiiiiiiiiiiiiiiiie e
6. TeSt YOUT PIUZIN ...vniiniiniiei e e e e e e aanas

v

List of Figures

I.1. IMX connection With JCONSOIEc.iuiriiiriiiiii s

Part I. User Guide

Table of Contents

INEFOAUCTION «..uuiiiiiiiii ettt ettt e e e iii
Lo SUIMIMATY ettt ettt et et e et e e e et e e e e e eeaees ii

2. JerkBot, from the USEr PErSPECIVEeuuiiuniiieii ettt ii

3. JerkBot, from a technical PersSpectiVvec..viuuiiiiiiiiiiiiiii e ii

4. Managing multiple bots on MUltiple SEIVETSccviiuiiiiiiiniiiiiieiieineieeieeieeanes iii

L FEAtUreS ...oooiinii 4
1. Funny Commands Plugincooiiiiiiiiii e 4

2. Factoid PIUGINc..oiuiiiiiii e 4

3. Karma PIUZINuiiniii e 4

4 TMX PIUZIN oottt 4

4.1. Listing available managed ObJECtsc.oceuviiiiiiiiiiiiiiiiiiiece e 5

4.2. See the attributes(properties) of a managed Objectccoeeuiiiiiiiiiiiiiiiinn.., 6

4.3. Read an attribute valueccouiviiiiiiiiiniiiiniiii e 6

4.4. Change an attribute valuecooviiiiiiiiiiiiiii e 6

4.5. See the methods of a managed ObJectceuveiiiiiiiiiiiiiiiiin e, 6

4.6. Call a method of a managed ObJECtc..oevuiiiniiiiiiiiiiiiiiie e 6

5. Authentication PIU@INc.oiiiiiiiiiiiiii e 6

5.1 SEgNIN, SIZNOUL euuittiiiit ettt et e 6

5.2, REGISLIAtION PIOCESS ...vvnevnetnein it etieti et e e et et ettt et e e e et et et e et e e enanes 7

5.3. Managing users and TOIEScoureiuiiitiiiniii e 7

6. IRC adminiStration PIUZINocuuiiiiiiiiiie e 7

T RSS PIUZIN «coniii e e e 8

8. SVIN PIUZIN ettt e 8

9. Statistics PIUZIN ..o.uiuniiiiiiii e 8

10. Javadoc PIUZINoeniiniiie e e 8

11. Weather PIUZINooniiuniii e 8

I CONTIGUIALION ..etniieit ettt et ettt et e e e e e e e eaeees 9
1. Setting up the databasec.uiiiuiiiiiiiii e 9

2. TREC SELHNES ..eeneeneine ettt et ettt et ettt et ettt et et e et e e e e eaneeas 9

3. EMAIl SEHHINES oeueeniintii ittt e 9

IIL. USING the DOt ..eeiniie i ettt e e e e 10
L. Start the DOtoiii e 10

1.1, Binary diStribUtiONocuuiiuniiiiiieiiei et 10

1.2. Source diStribUtiONcoouiiiiiiiiiiiiiii e 10

2. GettING NEIP .oeeneiie e 10

3. Information about a commandc.ccoooiiiiiiiiiiiin e 10

4. Addressing a MESSAZE 10 @ USET ...evuueuneunitneitetieit et eietteetean et et eeteeteeneanns 11

Introduction

This part will hopefully help you understand JerkBot, its features and how to get it running, and maybe
how to develop with it.

Note

I apologize in advance for grammar and spelling mistakes, [am aware of it and I am fixing
them time to time. The initial draft of the manual was written at late night. I only hope that
most sentences make sense! :-)

1. Summary

JerkBot is an IRC Bot written in Java and built on top of Jerklib IRC library. Jerklib provides high
level data structures, making it easy to use the library. That's why PircBot wasn't chosen.

2. JerkBot, from the user perspective

As other IRC bots, JerkBot has plugins and commands.

From a usage point of view, JerkBot has a relatively advanced session tracking mechanism and the
registration is similar to online registrations on website(email, confirmation, etc.).

The security implementation, while minimal at the moment, has the potential to be a whole lot more
sophisticated, to support multiple authentication modules at the same time(LDAP, Database, text files,
etc.).

Note

There's a non working implementation for channel logging. It's difficult to write a
sophisticated logging mechanism without taking into account most features that people would
expect. People might want to distribute logs(ftp, sftp, nfs, etc.), saving logs(database, text
files, search engine, etc.), generate HTML logs. People might also want to change scheduler
settings for logs of a particular channel, while keeping default settings for other channels, etc.

Such a task would require in my opinion, an entire project for flexibility.

3. JerkBot, from a technical perspective

The major difference between JerkBot and other Java based bots, from a technical perspective, is that
JerkBot is based on OSGI and it uses JMX for administration. JerkBot is not the first OSGI based bot,
but looks simpler than others.

After releasing the bot source code, I noticed that the ECF project from Eclipse, has an IRC bot
implementation. It also provides many things that I was planning to add, such as messaging protocol
abstraction, but it looks limited from a “strict IRC usage/usability/features perspective”.

4. Managing multiple bots on multiple servers

This feature has not been added because it would add extra issues : usability, code complexity.
Managing settings accross multiple servers would also mean:, sharing some settings, having some
specific settings per connection/channel if possible, “muting” the bot on specific servers.

iii

http://wiki.eclipse.org/IRC_bot
http://en.wikipedia.org/wiki/Internet_Relay_Chat_bot
http://jerklib.sf.net
http://www.jibble.org/pircbot.php
http://www.osgi.org/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://wiki.eclipse.org/IRC_bot

l. Features

JerkBot comes with many plugins. JerkBot without plugins has the following commands available :
* help: to list the commands available

* version: to display the version of the bot

* describe: to display the description of a command

In a channel, a command is prefixed by the filde character to prevent the bot from interpreting every
message.

~help
You can configure the default characters to use to replace the default tilde setting.

In a private message, the command prefix(tilde or any other character) is not interpreted . You would
just type directly the command name in a private message.

help

1. Funny Commands Plugin

The Funny Commands Plugin provides the following commands :

e google : Plugins that uses Let me google that for you

* chuck : Funny quotes about Chuck Norris.
* homer : Random quotes from Homer Simpson.
e brb : Tells stupid reasons about why you're away and why.

* ridicule : Makes the bot laugh at someone.

2. Factoid Plugin

This plugin helps the bot learns stuff. It also makes available the following commands:
* teach : Teaches the bot something

* forget : Makes the bot forget an existing factoid

e literal : Provides some metadata about an existing factoid

* info : Gives the definition of a known factoid

3. Karma Plugin

Raise or lower the karma(i.e. popularity) of a subject. No restrictions to the subject(could be
channel users, tools, etc.). It uses a simple filter for karma abuse.

The Karma Plugin provides the karma command.

4. JMX Plugin

“To put it in a simple way, the plugin provides command wrappers that can only be used by
authenticated users, through aliases, in private messages”.

http://lmgtfy.com/

Features

The JMX plugin adds JMX support to bot. It registers IMX MBeans that are accessible to the bot using
aliases. All MBeans exposed to JerkBot can be managed using JConsole.

The JMX plugin provides the jmx command.

Figure I.1. JMX connection with JConsole

'Eummarp Memory Threads Classes MAsans WM

MEeans

[Tree | Arcribigres ﬂﬂf‘l‘lhﬂ! i Motifcations Infa l
L2 F|..1 IMimp e meentation

b Gl Co, UL A PO gE e RE wiaid I:_
op) channel LEring

* B java.larsg
* [l java.u=illogging :
ol :
T Bl oL sl jerkhor plusgeds, autksnic = L s) [messageForalliChannels
¥ B Fermits
@ Fermics wihed i . -
T Bl UierAdmin _pant_ ! (channel String
4B UserAdmin " d
vai
B ner sl jerichan plsgied feeds |':_ kick | | ¢hannel Srring
¥ Bl FeadPollar
4@ FeedPole i - ~
Siandrot ok deap { ¢hannel Liring

* Bl meLsh jerkbor pluges. rcog
¥ [l netsf jerichol plegng. irciestion

L
* Bl RCSe ssionManager % T
- -
¥ @l netsf jerkbol. pluging. statistics v [Refrezh—)

o

L

All plugins that need to be configured by an administrative user are provided through the JMX
command. The JMX command requires authentication and can only be used in private messages.

4.1. Listing available managed objects

Understanding the jmx command.

describe jmx
JMX management for JerkBot(Admin commands)

help jmx

jmx objects| jmx describe object| jmx methods object|

jmx attrs object| jmx object.attribute |

jmx object.attribute=value| jmx object.method(paraml,...)

The JMX command uses a simple, programming language like, syntax. You'll notice it below.
To see which objects are available use:

jmx objects

With the default setup, the bot should answer:

Available managed objects are :
'bot', 'stats', 'log', 'svn', 'feeds', 'users', 'permits'

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Features

4.2. See the attributes(properties) of a managed object

Let's see the attributes of the feeds object :
jmx attrs feeds
The bot will answer

'PollingInterval' [The Feeds polling interval in seconds]
'FeedURL' [The feed URL]

4.3. Read an attribute value

The following command reads the PollingInterval value of the feeds object :
jmx feeds.PollingInterval
With the default settings the bot will answer

300

4.4. Change an attribute value

The following command changes the PollingInterval attribute of the feeds object :
jmx feeds.PollingInterval=800
The bot will answer

Operation Successfull!

4.5. See the methods of a managed object

To list all the methods available on the feeds object, do :
jmx methods feeds
The bot will answer

start()
stop()
status ()

4.6. Call a method of a managed object

jmx feeds.start()
The bot will answer

Operation Successfull!

5. Authentication Plugin
5.1. Signin, Signout

To create a new session, run the following command

signin username password

Features

If you don't use the IMX command for 30 minutes, your session will expire and you'll have to login.
To signout use

signout

The above commands can only be used in private messages.

Note

The default administrative user is admin with the password admin.

5.2. Registration process

* An administrator grants a permit to a user that allows him to register/confirm a pending registration.
The permit is only valid for some minutes.

jmx permits.createPermit(john, 192.168.1.30, 10)

. The above command will grant a permit for registration to the user john whos hostname is
192.168.1.30. The permit will be valid for /0 minutes.

If you don't know the hostname, make a /whois request.
» The user provides, in a private message, a username, password and email
register john password john.doe@gmail.com

* After few minutes, he'll receive an email with detailed instructions to confirm his pending
registration.

* The user will then confirm the pending registration, in a private message, by calling the confirm
command:

confirm john tokenid-XXXXX-—XXXXXXX

* Upon successful registration the bot will send a private notice to the user.

5.3. Managing users and roles

In JerkBot, administrative users are part of groups. There are two base groups : SuperAdmin and
Admin. A user in the SuperAdmin group can perform additional operations such as managing the users,
terminating the bot, etc.

You can add and remove users, add users to groups, etc.
The users administration is provided through JMX by the users object
jmx users.listUsers()

Use the jmx command parameters to get more information about the users object.

6. IRC administration plugin

It provides some, but not all, IRC administrative operations : kick, ban, op, deop, join, part, quit, etc.

This plugin exposes an MBean called bot which is accessible through the jmx command.

Features

7. RSS Plugin

The plugin fetches RSS Feeds at defined intervals and display the last news feed. It supports various
feeds formats such as ATOM, RSS, RDF. The RSS plugin used a modified version of Commons
FeedParser to avoid classLoader issues. Other Libraries such as Rome or Informa could have been

used.

The RSS plug-in registers the feeds object through JMX. You can configure the polling interval, the

URL and other settings.

8. SVN Plugin

The plugin fetches SVN revisions at defined intervals and display the last log message and revision.

The SVN plugin uses the SVNKit library no system calls or no SVN installation is required.

The plug-in is provided through the jmx command with the alias svn. You can configure the polling

interval, the URL, credentials and other settings.

9. Statistics Plugin

This plug-in displays OS Runtime statistics. It is provided through the jmx command with the alias

stats.

jmx describe stats

3%% methods stats

éﬁé attrs stats

3%% stats.retrieveStats()

(FreeBSD 8.0-BETA3) (JDK 1.6.0 07) (Processors:1l) (RAM:99.0%)

10. Javadoc Plugin

The plugin provides Javadoc search for the JDK API 5.0. It uses a pre-built Lucene Index of the API.
It's probably faster to use a search engine than a database. Some people might have preferred to use

Hibernate Search or Compas+JPA .

The Javadoc plugin provides the javadoc command.

~javadoc ArrayList
http://is.gd/2C0V4

11. Weather Plugin

The Weather plugin calls a Web Service to get the weather for a given city in the USA.
This plugin provides the weather command.

~weather Atlanta
Weather for 'Atlanta': Sunny

http://www.opensymphony.com/compass/versions/0.9.0/html/gps-jpa.html
http://commons.apache.org/sandbox/feedparser/
http://commons.apache.org/sandbox/feedparser/
https://rome.dev.java.net/
http://informa.sourceforge.net/
http://svnkit.com/
https://www.hibernate.org/410.html

Il. Configuration

Note

In the source distribution, configuration settings are located in the runtime sub-directory!

1. Setting up the database

There's no setup needed for the current distribution. The default settings are populated on boot. The
default administrative user is admin with the password admin.

The previous version of JerkBot used PostgreSQL but it might have been slightly more complicated
to setup. That's why the distribution is shipping with an embedded database(HSQLDB). JerkBot has
been tested on MySQL, PostgreSQL, Apache Derby and HSQLDB.

2. IRC settings

In the etc directory, edit the file jerkbot . properties. Change the default settings : IRC server,
username, password, etc.

jerkbot.server=anthony.freenode.net

#comma separated channels to join upon successful connection
jerkbot.channels=##swing

jerkbot .name=mybot

jerkbot .nick=mybot

jerkbot.realname=mybot

jerkbot.greeting=Hello World, I'm here
jerkbot.password=mybot optional registered password

#comma separated characters that will make the bot react
jerkbot.triggers=-~

3. Email settings

In the etc directory, edit the file mail . properties. Fill the smtp properties for the server to use.
The default settings are for gmail.

mail.user=MY GMAIL ACCOUNTE@gmail.com
mail.from=MY GMAIL ACCOUNTE@gmail.com
mail.password=MY GMAIL PASSWORD
mail.debug=true
mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
mail.smtp.socketFactory.fallback=false
mail.smtp.socketFactory.port=465
mail.smtp.port=465

mail.smtp.auth=true
mail.smtp.host=smtp.gmail.com
mail.smtp.starttls.enable=true

Note

You don't need to restart the application if you modify the email settings

http://hsqldb.org/
http://www.postgresql.org/

lll. Using the bot
1. Start the bot

Note

As a reminder, the default administrative user is admin with the password admin. You can
remove the default user later using administrative commands.

1.1. Binary distribution

Go to the bin folder for jerkbot-bin distribution and run the command ./launcher.sh or launcher.bat
if you use Windows.

After connecting to IRC, the bot will join the channel(s) that you specified in the file
jerkbot.properties previously.

Note

The binary distribution uses Apache Felix as OSGI container.

1.2. Source distribution

If you are using the source distribution, there's no launcher, use
mvn install pax:provision

Maven will compile and package the project artifacts and run the bot in Equinox OSGI container.

2. Getting help

When confused, use the help command
~help
If you're using the default distribution, you should see something similar to this

Available commands are: 'brb', 'chuck',

'confirm', 'describe', 'forget', 'google', 'help', 'homer',
'info', 'javadoc', 'jmx', 'karma', 'literal', 'register',
'ridicule', 'signin', 'signout', 'slap', 'teach', 'version',
'weather'. You can also ask me about ~help | ~help <command>

3. Information about a command

When you're curious about a command, use the describe command to get more information.

~help describe

~describe <command>

~describe info

Provides the definition of a factoid
~help info

~info <factoid>

~info Linux

I don't know anything about 'Linux'

10

Using the bot

4. Addressing a message to a user

~~john info Java

The bot knows that the tilde characters means that it needs to target the message. In this case, it will
use the info command and attempt to resolve the Java factoid.

It will then answer to john.
john : Java is a programming language.
Thanks to command resolvers, explained in the developer guide, you can also type:

~Linux

11

Part Il. Developer Guide

Table of Contents

INEFOAUCTION ..euuiiiiiiii e et ettt e e e e Xiv
L. Target AUIEICE «..ueuneiieitt ettt et et e e e e eans Xiv

2. GENETAL NMOE ...oviniiiiiiiiiie ittt et Xiv

IV. Technical InfOrmationccoouuiiiiiiiiiiiiiii e e 15
L. OVEIVIBW oottt ettt et e e 15

2. The build system : Apache Mavenoouiiuiiiiiiiiiiiiii e 15

3. Main components and COde SIIUCTUIEviuuiiuniiineiieiieit ettt e eaneeans 16

Bl LOZEINE ceneineiie ittt 16

3.2, EXCEPLIONS ..euteineintei ettt ettt ettt e 16

330 OSGI o e 16

3.4.J0b Schedulingc.oiiniiiii e 16

3.5, TRICAAING . oeueineiie ittt e 17

3.6. The MESSAZE PAISET SEIVICE ...ueuuiuneitneiteiteii ettt e eie et et e e eeeeeenneens 17

3.7. The command SEIVICEceuuuiiiiuiiiiiniiiineiiieei e e 17

3.8. The command resSOIVEr SEIVICEceuuuiiiiniiiiiniiiineiiieeiie et 17

3.9. The SESSION SEIVICEuuiiuuniiiineiiineiii ettt ettt e e e 17

3.10. The login MOdUIE SEIVICEiuuuiiuiiniiineiieiiiei et 18

311 PEISISIBIICE ..vvuneiiiieiiiieeiiit ettt et ettt 18

V. Plugin @XamPLe ..c..ouniiiniiiii e e 19
1. Set UP @ MAVEIN PIOJECT «.uetneitneiteiieit ettt et et et e et et et e et et e et e ean e eieeaneenns 19

2. Setup the MAVEN PIOJECT ...vvuuniiiniiiieiii ettt ettt et e e et e e eeaaes 19

3. Creating your first commandccooeoiiiiiiiiiiiii e 20

4. Create the OSGI bundlecoouiiiiiiiiiiiiiii e, 21

5. Setup the bot to recognize your pluUinoceuveuniiiniiiiiiiniiiiiei e 21

6. TeSt YOUT PIUZIN .uuiiniineiie e e ei e 21

13

Introduction

1. Target Audience

I assume the following things :

* You know how to use an IDE or write Java code in a text editor.

* You have used Maven as a developer or as a user to compile a library.

* You've used OSGI or read some articles about it, as I won't be explaining it.

* You're not a Java beginner as [won't be giving much definitions about Java technologies in General.

2. General note

The bot has only been tested on Mac OS X 10.5.x, Linux(Slackware, Debian), FreeBSD. It should
work on Windows too :-).

Note

In the binary distribution, the bot launchers are located in the bin directory of the
distribution. In the source distribution, you would use Maven, by executing the pax:provision
goal : mvn install pax:provision

Xiv

IV. Technical information

1. OverView

2. The build system : Apache Maven

Apache Maven is JerkBot's build system. I believe that it's easier to manage OSGI projects and project
dependencies in general with Maven. For sure, using Maven for very small projects is overkill.

Maven plays 2 goals here :
* Manage dependencies
* Build the project and package the project artifacts into OSGI bundles

Plugins are in the plugins pom project.

15

http://maven.apache.org

Technical information

3. Main components and code structure
3.1. Logging

JerkBot uses SLF4J. The default download uses Log4J binding, but you could use any other binding
available for SLF4J such as JDK java.util.logging.

The logging parameters for log files are configured in the launcher using system properties.

3.2. Exceptions

At the root of the exceptions hierarchy is
net.sf.jerkbot.exceptions.JerkBotException. That exception extends
java.lang.RuntimeException which means it's unchecked and won't prevent an operation to
continue if possible. If you don't catch the exception, the bot will trap it and attempt to display an
appropriate message.

There are 4 base exceptions that derive from JerkBotException, all located in the package
net.sf.jerkbot.exceptions:

* AccessDeniedException : This exception is thrown to notify a user that he doesn't have
access to a command. For example, a command might only be executed given one or all the
following conditions : the message is private, the user is authenticated, the user is a member of a

specific group.

e CommandExistsException : Exception thrown by the command service if a command
attempts to register a prefix that is already mapped.

* CommandSyntaxException : Exception thrown by a Command when the syntax is invalid.
e ConfigurationException : Exception thrown by a component when a configuration

parameter, setting or file is missing. That exception should provide useful information about how
to fix the problem.

3.3. OSGl

JerkBot is built on top of OSGI to provide a modular architecture among other things.
The previous builds of the Bot used different approaches

* The first build of the bot was written using “traditional OSGI” with BundleActivator, etc. It was
painful to write code, too verbose, but not so complicated.

* SCR was better, but most examples use XML component declarations.
* SCR also supports annotations and a maven plugin can generate the XML descriptors.

¢ [Pojo. IPojo was ideal for JerkBot because of all its features(JMX support, etc.). However IPojo has
some blocking limitations(abstract classes for services, etc.).

The choice was made to go with SCR annotations because it was easy, stable, mature and convenient. A
partial rewrite of a previous build helped removing unecessary abstractions and simplifying the code.

3.4. Job Scheduling

The bot is bundled with Quartz Job Scheduler. The Job scheduler is used by :

16

http://www.opensymphony.com/quartz/
http://www.slf4j.org/
http://logging.apache.org/log4j/
http://www.osgi.org/
http://www.osgi.org/javadoc/r4v41/org/osgi/framework/BundleActivator.html
http://felix.apache.org/site/apache-felix-service-component-runtime.html
http://felix.apache.org/site/apache-felix-maven-scr-plugin.html
http://felix.apache.org/site/ipojo-concepts-overview.html
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Technical information

* the session service to track user session expiration
* the register command to register new users. The pending registrations are placed in the job queue
and deleted as soon as the registration is confirmed, or after a delay if the user doesn't confirm his

registration.

There are some parts of the application that only use a ScheduledExecutorService.

3.5. Threading

The bot has a custom thread pool to manage requests and avoid consuming too many resources. When
the bot is busy, awaiting requests are placed in a queue.

3.6. The message parser service

The message parser service creates an enhanced IRC message from the raw IRC message. It parses
the raw IRC message and resolves the command to use, the person to answer to, etc.

Consider the following original irc message
sender=xxx, message=~~john info swing
It will be enhanced to this (omitting additional info)
sender=xxx,

operation=info,

target=john,

rawText=~~john info swing
message=swing

3.7. The command service

The command service reads the enhanced IRC message to extract the name of the command to call.
It performs a lookup of registered commands by their name and executes the command that matches
a prefix. There's no iteration or loop, as the commands are hold by a map.

3.8. The command resolver service

The command resolver is called whenever there's no command found after parsing the IRC message.
As JerkBot is strictly command based, i.e. it doesn't iterate through available commands and for
example match messages against regular expressions.

However, instead of typing ~info swing, the user might prefer a shortcut such as ~swing. That's what
command resolvers provide in the command resolver service.

Warning

Creating a command resolver for the jmx command would introduce security concerns.

3.9. The session service

The session service tracks user sessions. It relies on the LoginModuleService(provided by the
authentication plugin). You can think about it as an account session in a webmail account or a website.
The session expires if you don't use administrative commands for a while.

No authentication plugin = No authentication(i.e no session) = No administrative tasks enabled.

17

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Technical information

3.10. The login module service

It provides authentication to the session service as well as JMX managed objects through the jmx
command. The login module is provided by the authentication plugin. It was easier to make it a
separated module instead of hardcoding many things directly.

With the login module, the bot knows how to authenticate users, associate them to roles, etc. Using
Jjmx managed objects, you can administrate users and roles.

3.11. Persistence

JerkBot uses JPA(EclipseLink) because it's more suitable for OSGI development, easier to setup, etc.
The previous versions of JerkBot used Hibernate and at the very beginning OpenJPA.

The persistence unit and the JPA entities are located in the Maven persistence module.

On startup the persistence 'plugin' configures the EntityManagerFactory in the utility class
net.sf.jerkbot.util.JPAUtil, located in the core module.

If you want to add new JPA entities, you should add them in the persistence maven module to avoid
classloading issues, unless you're introducing a new persistence unit.

The persistence module provides the following JPA entities:

* Factoid : Entity holding what the bot learned.

* Admin : Entity holding administrative users.

* Role : Entity holding administrative roles

e Karma : Entity holding popularity of subjects(channel users, tools, etc.)

There's no strict/common usage of the DAO pattern, no interface->implementation, just
straightforward DAO. The bot uses few proprietary Eclipselink annotations, switching to another
implementation will be trivial as there are not many DAO:s.

18

http://openjpa.apache.org/
http://www.eclipse.org/eclipselink/
http://hibernate.org

V. Plugin example

1. Set up a maven project

I'm comfortable with the command line but it's like coding a medium/big project without an IDE. Use
the command line at the beginning and switch to the IDE when you understand the concepts.

In Eclipse, I use the M2Eclipse plugin or Q4E. In IntelliJ, I just create a Maven project and same with
NetBeans with the Maven plugin installed.

Note

If you prefer the command line follow this simple guide.

Warning

The maven pom configurations are not optimal, as not everything was cleaned up after major
rewrites.

2. Setup the maven project

Create a new Maven Project. In the dependencies section of your pom.xml, add the following:

<dependency>
<groupId>net.sf.jerkbot</groupld>
<artifactId>net.sf.jerkbot.core</artifactId>
<version>0.0.1-SNAPSHOT</version>
</dependency>

The module net.sf.jerkbot.core provides the base classes of the bot, so you need it.
Make sure that you've setup the project packaging type.

<project>
<packaging>bundle</packaging>

</project>

The Maven Bundle plugin needs the packaging type to be set to that value to handle the OSGI manifest
for you.

Setup the Maven Bundle Plugin and the Maven SCR Plugin to create the OSGI manifest for you. The
Maven Bundle Plugin will add the OSGI headers to the jar archive manifest. The SCR plugin will
auto-generate the XML descriptors for managed components and append some entries to the OSGI
manifest.

<project>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1l.5</source>
<target>1.5</target>

19

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://m2eclipse.sonatype.org/
http://code.google.com/p/q4e/
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

Plugin example

</configuration>
</plugin>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-SymbolicName>$ {pom.artifactId}</Bundle-SymbolicName>
<Bundle-Version>$ {pom.version}</Bundle-Version>
<Bundle-Vendor>John Doe</Bundle-Vendor>
<Bundle-Name>My first plug-in</Bundle-Name>
</instructions>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.felix</groupld>
<artifactId>maven-scr-plugin</artifactId>
<version>1.2.0</version>
<executions>
<execution>
<id>generate-scr-scrdescriptor</id>
<goals>
<goal>scr</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

</project>

If you don't manage to get the maven project setup, copy and paste the pom.xml from the funny
module in the directory plugins, and customize it.

3. Creating your first command

This example is a relatively simple HelloWorld command, to greet people.

package com.mypackage;

import net.sf.jerkbot.commands.AbstractCommand;

import net.sf.jerkbot.commands.Command;

import net.sf.jerkbot.commands.MessageContext;

import net.sf.jerkbot.exceptions.CommandSyntaxException;
import net.sf.jerkbot.util.MessageUtil;

import org.apache.felix.scr.annotations.Activate;
import org.apache.felix.scr.annotations.Component;
import org.apache.felix.scr.annotations.Service;

import org.osgi.service.component.ComponentContext;

@Component (immediate = true)

@Service(value = Command.class)

public class HelloCommandImpl extends AbstractCommand {
private static final String COMMAND HELP = "~hello";

20

Plugin example

private static final String COMMAND NAME = "HELLO";
private static final String COMMAND DESCRIPTION = "“Say hello";

public MyCommandImpl() {
super (COMMAND NAME, COMMAND DESCRIPTION, COMMAND HELP) ;
}

@Activate

protected void activate(ComponentContext componentContext) {
System.out.println(“Activated HelloComponent");
}

public void execute(MessageContext context)
throws CommandSyntaxException {
MessageUtil.say(context, "Hello");

}

4. Create the OSGI bundle

Run mvn install in the project folder to generate the jar file. It will be located in your target folder.
Note

If you only want to setup the binary distribution, copy the resulting jar in the 1ibs folder
of the jerkbot-bin distribution.

5. Setup the bot to recognize your plugin

If you're running the source distribution, run the command below and ignore the rest of this
section.

mvn install pax:provision
The rest of this section is relevant, only if you're using the binary distribution of jerkbot.

Now that you've created the jar archive, you need the bot to be aware of it, it's not a “drop a file
here and we're good” .

Edit the etc/config.properties file from jerkbot-bin distribution. Add a separator at the end of the last
line and register your jar.

file:../libs/net.sf.jerkbot.plugins.meteo-0.0.1-SNAPSHOT. jar \
file:../libs/MY OSGI_JAR FILE GOES_HERE.jar

Go to the bin folder for jerkbot-bin distribution and run the command ./launcher.sh

6. Test your plugin

After launching the bot, fire up your IRC client to connect to the network your bot is on and join a
channel where the bot is.

Try out your plugin using the instruction:

~hello

21

Plugin example

If everything went fine, the bot should answer:
yournick : Hello

~~john hello
Hello john

The launcher is running in DEBUG mode by default to get lots of details about errors and components
loaded. If something went wrong, look at the console and the logs located in the 1ogs folder of the
jerkbot-bin distribution(runtime/logs for the source distribution).

Warning

It's better to test the bot in a random channel such as #abcde where there's nobody. Some
IRC channels don't tolerate the fact that you bring your own bot(disturbing the peace heh!).
That's especially relevant when there's already a bot on the given channel.

22

References

IRC protocol specification (RFC1459). http://www .irchelp.org/irchelp/rfc/rfc.html .

JerkLib Website. http://jerklib.sf.net .

Some IRC bots. http://www.dmoz.org/Computers/Software/Internet/Clients/Chat/IRC/Bots .

OSGi Alliance | Specifications /| HomePage. http://www.osgi.org/Specifications/HomePage .

OSGi articles. http://neilbartlett.name/blog/osgi-articles/ .

Declarative Services Dependency Injection OSGi style. http://www .slideshare.net/fmeschbe/declarative-services-
dependency-injection-osgi-style .

Apache Felix Website. http://felix.apache.org/ .

IPOJO Website. http://felix.apache.org/site/ipojo-concepts-overview .html .

Pax Runner - OPS4J. http://paxrunner.ops4j.org/space/Pax+Runner .

Apache Maven. http://maven.apache.org/ .

Maven BND Plugin. http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html .

Maven SCR Plugin. http://felix.apache.org/site/apache-felix-maven-scr-plugin.html .

Maven PAX Plugin. http://www.ops4j.org/projects/pax/construct/maven-pax-plugin/ .

23

http://www.ops4j.org/projects/pax/construct/maven-pax-plugin/
http://www.irchelp.org/irchelp/rfc/rfc.html
http://jerklib.sf.net
http://www.dmoz.org/Computers/Software/Internet/Clients/Chat/IRC/Bots/
http://www.osgi.org/Specifications/HomePage
http://neilbartlett.name/blog/osgi-articles/
http://www.slideshare.net/fmeschbe/declarative-services-dependency-injection-osgi-style
http://www.slideshare.net/fmeschbe/declarative-services-dependency-injection-osgi-style
http://felix.apache.org/
http://felix.apache.org/site/ipojo-concepts-overview.html
http://paxrunner.ops4j.org/space/Pax+Runner
http://maven.apache.org/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://felix.apache.org/site/apache-felix-maven-scr-plugin.html

	JerkBot documentation
	Table of Contents
	Part I. User Guide
	Introduction
	1. Summary
	2. JerkBot, from the user perspective
	3. JerkBot, from a technical perspective
	4. Managing multiple bots on multiple servers

	I. Features
	1. Funny Commands Plugin
	2. Factoid Plugin
	3. Karma Plugin
	4. JMX Plugin
	4.1. Listing available managed objects
	4.2. See the attributes(properties) of a managed object
	4.3. Read an attribute value
	4.4. Change an attribute value
	4.5. See the methods of a managed object
	4.6. Call a method of a managed object

	5. Authentication Plugin
	5.1. Signin, Signout
	5.2. Registration process
	5.3. Managing users and roles

	6. IRC administration plugin
	7. RSS Plugin
	8. SVN Plugin
	9. Statistics Plugin
	10. Javadoc Plugin
	11. Weather Plugin

	II. Configuration
	1. Setting up the database
	2. IRC settings
	3. Email settings

	III. Using the bot
	1. Start the bot
	1.1. Binary distribution
	1.2. Source distribution

	2. Getting help
	3. Information about a command
	4. Addressing a message to a user

	Part II. Developer Guide
	Introduction
	1. Target Audience
	2. General note

	IV. Technical information
	1. OverView
	2. The build system : Apache Maven
	3. Main components and code structure
	3.1. Logging
	3.2. Exceptions
	3.3. OSGI
	3.4. Job Scheduling
	3.5. Threading
	3.6. The message parser service
	3.7. The command service
	3.8. The command resolver service
	3.9. The session service
	3.10. The login module service
	3.11. Persistence

	V. Plugin example
	1. Set up a maven project
	2. Setup the maven project
	3. Creating your first command
	4. Create the OSGI bundle
	5. Setup the bot to recognize your plugin
	6. Test your plugin

	References

